Presented ASEG 1995 Conference Adelaide Australia

Spectral Signatures of Hydrocarbons

Signal Estimation Technology Inc.
Total Depth (Exploration Services) Pty. Ltd.

Introduction

◆ In this talk we will demonstrate the use of spectral analysis as an effective tool for the detection of lithologic changes and spectral attenuation associated with hydrocarbon bearing reservoirs.

Topics of Discussion

- Motivation
- Spectral Attributes (using Spectra)
- Comparison of Spectra and other attributes
- Examples
- Conclusion

Motivation

- Seismic attributes are used for the delineation of structural and stratigraphic features, hydrocarbon detection, pattern recognition, EOR, and reservoir monitoring
- Traditional seismic attributes are often insufficient to accurately meet the explorationists needs.
- We need to acquire additional meaningful seismic attributes
- We need to improve upon our techniques of estimating seismic attributes

Spectral Signatures

- Lithological
 - Tuning effects, e.g. pinch-outs
 - Time sagging due to changes in velocity or thickness
- Petrophysical
 - Attenuation (Generally gas attenuates more than oil more than water)

Spectral Attributes

- Quantile Frequencies
- Peak Tracking
- Spectral Ratio
- Bandwidth

E = Energy between fl and fh q% of E = energy between fl and fl 50% of E = energy between fl and f2(100-q)% of E = Energy between fl and f3

Spectral detection of lithologic changes and seismic attenuation (Spectra)

Signal and Wavelet Estimation

Instantaneous Frequency vs. Spectra

Instantaneous Frequency

- Point-by-point calculations
- Sensitive to noise
- Physically meaningless
 (e.g. signal with more than one freq., -ve freq., etc.)

Spectra

- Uses a time window
 (interaction of events)
- Robust to noise
- Physically meaningful

AVO vs. Spectra

AVO

- Point-by-point
- Sensitive to noise
- Sensitive to AGC, NMO, decon and demultiple
- Requires good resolution seismic data
- Sensitive to dips

Spectra

- Uses a time window
- Robust to noise
- Robust to AGC, NMO, decon and demultiple
- Can work for thin reservoirs
- Works in dipping environments

Examples

- Middle Devonian Pinnacle Reef (synthetic)
 Western Canada
- Upper Devonian Pinnacle Reef (real data)
 Western Canada
- Triassic Channel Sand (real data)
 Western Canada
- Early Cretaceous Deltaic Sand (real data)
 Western Australia

Geologic Cross Section

Dry Wells

Gas and Oil Wells

Dry Wells

15 Layers above Reef

10 Layers within Reef

10 Layers below Reef

100m

100m

Middle Devonian Pinnacle Reef Model Reflectivity and Spectra

Middle Devonian Pinnacle Reef Model 20 Hz Ricker Wavelet and Spectra

Middle Devonian Pinnacle Reef Model 35 Hz Ricker Wavelet and Spectra

Middle Devonian Pinnacle Reef Model 25 Hz Ricker Wavelet and Spectra (SNR=0.1)

Middle Devonian Pinnacle Reef Model 25 Hz Ricker Wavelet and Spectra (Noise Free)

A Schematic diagram of Principal Component Analysis First Component

Signal Estimation Technology Inc. & Total Depth (Exploration Services) Pty. Ltd.

Triassic Sand Example Real Data Estimated Wavelet Spectra Trace Time

Base Cretaceous Deltaic Sand (Roller Field) Estimated Wavelet Spectra

Conclusions

- We have outlined techniques for estimating the signal and wavelet spectra from noisy seismic data.
- Spectral analysis is an effective tool for the detection of lithologic changes and spectral attenuation associated with fluid saturated rocks
- Spectral attenuation can be used to detect hydrocarbon reservoirs whose thickness is below seismic resolution
- Spectral signatures contain useful seismic attributes which can make a significant contribution to the successful, evaluation and exploitation of hydrocarbons in a variety of geological settings

Principal Component Analysis: Estimated and Residual Wavelet Spectra

Western Australia Estimated Wavelet Spectra

